Posts Tagged ‘behavioral ecology’

Infovores

September 12, 2017

Infovores is a term that has been coined to characterize we humans as information-seeking creatures. Drs. Adam Gazzaley and Larry Rosen, the authors of “The Distracted Mind”, note that as we are information-seeking creatures, behaviors that maximize information accumulation are optimal. This notion is supported by findings that molecular and physiological mechanisms that originally developed in our brain to support food foraging for survival have now involved in primates to include information foraging. Data that support this assertion are based on observations that the dopaminergic stream, which is crucial for all reward processing, plays a key role in both basic food-foraging behavior in lower vertebrates and higher-order cognitive behaviors in monkeys and humans that are often dissociated from clear survival benefits. The role of the dopamine system has been shown to relate directly to information-seeking behavior in primates. For example, macaque monkeys respond to receiving information similarly to the way they respond to primitive rewards such as food or water. Moreover, “single dopamine neurons process both primitive and cognitive rewards, and suggest that current theories of reward-seeking must be revised to include information-seeking. From this perspective behaviors that are intended to maximize exposure and consumption of new information, but end up causing interference, can be thought of as optimal.

So does this explain why, according to a 2015 report by the Pew Research Center, 96% of all US adults own a mobile phone, and 68% own a smartphone? Among these smartphone users, 97% regularly use their phones to send text messages, 89% to access the Internet, and 88% send and receive email. Worldwide estimates are that 3.2 billion people, 45% of the world’s population, own a mobile phone. Smartphones, desktops, and laptops support multiple apps while web browsers allow numerous simultaneously open tabs and windows, which make it increasingly difficult to attend to a single website or app without having our attention lured away.

So, we can blame our dopamine neurons for our being drawn to all these new sources of information. But it does not appear that we are using these sources of information optimally. Perhaps insights from behavioral ecology. a field that explores the evolutionary basis of behavior by studying interactions between animals and their environments might shed light on our interference inducing behavior.

An important contribution to the field of behavioral ecology has been the development of optimal foraging theories. These theories are built on findings that animals do not forage for food randomly, but rather optimize their foraging activities based on the drive to survive. Shaped by natural selection, foraging behaviors that successfully maximize energy intake are selected and persist over time. Mathematical models of foraging behavior have been developed that can be used to predict the action given their environmental conditions. They describe how an “optimal forager” would behave in any given situation. Although actual behaviors deviate from predictions made from these models, these models are frequently not far off the mark and have served as useful tools to understand the complex interplay between behavior and the environment.

In 1976 evolutionary biologist Eric Charnel developed an optimal foraging model known as the “marginal value theorem” (MVT). This theorem was formulated to predict the behavior of animals that forage for food in “patchy” environments. MVT models predict how much time an animal will spend in a current patch before moving on to a new patch, given environmental conditions.

Optimal foraging theories have already been applied to human information foraging to help us understand how we search the Internet and our own memories, as well as how scholars and physicians search the research literature. Drs. Adam Gazzaley and Larry Rosen state that to the best of their knowledge, such theories have not been used to address the critical question of why we engage in interference-inducing behaviors, even when they are self-destructive. The answer to this question will be pursued in future posts.

© Douglas Griffith and healthymemory.wordpress.com, 2017. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Douglas Griffith and healthymemory.wordpress.com with appropriate and specific direction to the original content.